

 $Head \ to \underline{www.savemyexams.com} \ for \ more \ awe some \ resources$

DP IB Maths: AA HL

3.7 Inverse & Reciprocal Trig Functions

Contents

- * 3.7.1 Reciprocal Trig Functions
- * 3.7.2 Inverse Trig Functions

3.7.1 Reciprocal Trig Functions

Your notes

Reciprocal Trig Functions

What are the reciprocal trig functions?

- There are three reciprocal trig functions that each correspond to either sin, cos or tan
 - Secant (sec x)

$$\sec x = \frac{1}{\cos x}$$

Cosecant (cosec x)

$$\cos \operatorname{ec} x = \frac{1}{\sin x}$$

Cotangent (cot x)

$$\cot x = \frac{1}{\tan x}$$

- The identities above for sec x and cosec x are given in the formula booklet
- The identity for cot x is **not given**, you will need to remember it
- A good way to remember which function is which is to look at the **third** letter in each of the reciprocal trig functions
 - cotxislovertanxetc
- Each of the reciprocal trig functions are undefined for certain values of x
 - $\sec x$ is undefined for values of x for which $\cos x = 0$
 - cosec x is undefined for values of x for which $\sin x = 0$
 - $\cot x$ is undefined for values of x for which $\tan x = 0$
 - When $\tan x$ is undefined, $\cot x = 0$

Rearranging the identity
$$\tan x = \frac{\sin x}{\cos x}$$
 gives

$$\cot x = \frac{\cos x}{\sin x}$$

- This is not in the formula booklet but is easily derived
- Be careful not to confuse the reciprocal trig functions with the inverse trig functions

$$\sin^{-1} x \neq \frac{1}{\sin x}$$

What do the graphs of the reciprocal trig functions look like?

- The graph of $y = \sec x$ has the following properties:
 - The y-axis is a line of symmetry
 - It has a **period** of **360°** (2π radians)
 - There are vertical asymptotes wherever cos x = 0

- If drawing the graph without the help of a GDC it is a good idea to sketch cos x first and draw these in
- The domain is all x except odd multiples of 90° (90°, -90°, 270°, -270°, etc.)
 - in radians this is all x except odd multiples of $\pi/2$ ($\pi/2$, $-\pi/2$, $3\pi/2$, $-3\pi/2$, etc.)
- The range is $y \le -1$ or $y \ge 1$

- The graph of $y = \csc x$ has the following properties:
 - It has a **period** of 360° (2π radians)
 - There are vertical asymptotes wherever sin x = 0
 - If drawing the graph it is a good idea to sketch sin x first and draw these in
 - The **domain** is all *x* **except multiples of 180°** (0°, 180°, -180°, 360°, -360°, etc.)
 - in radians this is all x except multiples of π (0, π , π , 2π , – 2π , etc.)
 - The range is $y \le -1$ or $y \ge 1$

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

- The graph of $y = \cot x$ has the following properties
 - It has a **period** of **180°** or π radians
 - There are vertical asymptotes wherever tan x = 0
 - The **domain** is all *x* **except multiples of 180°** (0°, 180°, -180°, 360°, -360°, etc.)
 - In radians this is all x except multiples of π (0, π , π , 2 π , -2 π , etc.)
 - The **range** is $y \in \mathbb{R}$ (i.e. cot can take *any* real number value)

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

Examiner Tip

- To solve equations with the reciprocal trig functions, convert them into the regular trig functions and solve in the usual way
- Don't forget that both **tan** and **cot** can be written in terms of **sin** and **cos**
- You will sometimes see **csc** instead of **cosec** for cosecant

Worked example

Without the use of a calculator, find the values of

 $\sec \frac{\pi}{6}$

$$\operatorname{Sec}\left(\frac{\pi}{6}\right) = \frac{1}{\cos\left(\frac{\pi}{6}\right)}$$
the third letter
is \underline{c} so sec is related
to $\underline{cos}\left(\frac{\pi}{6}\right)$ is an exact
to $\underline{cos}\left(\frac{\pi}{6}\right)$ value you should know.
$$\operatorname{Sec}\left(\frac{\pi}{6}\right) = \frac{2}{\sqrt{3}}$$

b) cot 45°

Your notes

Pythagorean Identities

What are the Pythagorean Identities?

- Aside from the Pythagorean identity $\sin^2 x + \cos^2 x = 1$ there are two further Pythagorean identities you will need to learn
 - $1 + \tan^2 \theta = \sec^2 \theta$
 - $1 + \cot^2 \theta = \csc^2 \theta$
 - Both can be found in the formula booklet
- Both of these identities can be derived from $\sin^2 x + \cos^2 x = 1$
 - To derive the identity for $\sec^2 x$ divide $\sin^2 x + \cos^2 x = 1$ by $\cos^2 x$
 - To derive the identity for $\csc^2 x$ divide $\sin^2 x + \cos^2 x = 1$ by $\sin^2 x$

Copyright © Save My Exams. All Rights Reserve

Examiner Tip

All the Pythagorean identities can be found in the **Topic 3**: **Geometry and Trigonometry** section of the formula booklet

Worked example

Solve the equation $9 \sec^2 \theta - 11 = 3 \tan \theta$ in the interval $0 \le \theta \le 2\pi$.

9sec²
$$\theta$$
 - II = 3 tan θ , $0 \le \theta \le 2\pi$

consider how this could be changed to use tan² + 1 = sec²

(9sec² θ - 9) - 2 = 3 tan θ

9(sec² θ - 1) - 2 = 3 tan θ

9tan² θ - 3tan θ - 2 = 0

(3 tan θ - 2)(3 tan θ + 1) = 0

tan θ = $\frac{2}{3}$ $\Rightarrow \theta$ = 0.5880 ...

or θ = π + 0.5880 ... = 3.729 ...

or tan θ = $-\frac{1}{3}$ $\Rightarrow \theta$ = -0.3217...

or θ = π + (-0.3217...) = 2.819...

and θ = 2 π + (-0.3217...) = 5.961...

Head to www.savemyexams.com for more awesome resources

3.7.2 Inverse Trig Functions

Your notes

Inverse Trig Functions

What are the inverse trig functions?

- The functions arcsin, arccos and arctan are the inverse functions of sin, cos and tan respectively when their domains are restricted
 - $\sin(\arcsin x) = x \text{ for } -1 \le x \le 1$
 - $\cos(\arccos x) = x \text{ for } -1 \le x \le 1$
 - tan(arctan x) = x for all x
- You will have seen and used the inverse trig **operations** many times already
 - Arcsin is the operation sin⁻¹
 - Arccos is the operation cos⁻¹
 - Arctan is the operation tan-1
- The domains of sin, cos, and tan must first be restricted to make them one-to-one functions
 - A function can only have an inverse if it is a one-to-one function
- The domain of $\sin x$ is restricted to $-\pi/2 \le x \le \pi/2$ ($-90^{\circ} \le x \le 90^{\circ}$)
- The domain of $\cos x$ is restricted to $0 \le x \le \pi$ ($0^{\circ} \le x \le 180^{\circ}$)
- The domain of tan x is restricted to $-\pi/2 < x < \pi/2$ ($-90^{\circ} < x < 90^{\circ}$)
- Be aware that $\sin^{-1} x$, $\cos^{-1} x$, and $\tan^{-1} x$ are **not** the same as the reciprocal trig functions
 - They are used to solve trig equations such as $\sin x = 0.5$ for all values of x
 - $\arcsin x$ is the same as $\sin^{-1} x$ but not the same as $(\sin x)^{-1}$

What do the graphs of the inverse trig functions look like?

- The graphs of **arcsin**, **arccos** and **arctan** are the **reflections** of the graphs of **sin**, **cos** and **tan** (after their domains have been restricted) in the line *y* = *x*
 - The **domains** of $\arcsin x$ and $\arccos x$ are both $-1 \le x \le 1$
 - The range of $\arcsin x$ is $-\pi/2 \le y \le \pi/2$

Copyright © Save My Exams. All Rights Reserved

• The **range** of arccos x is $0 \le y \le \pi$

- The **domain** of $\operatorname{arctan} x \operatorname{is} x \in \mathbb{R}$
- The **range** of arctan x is $-\pi/2 < y < \pi/2$
 - Note that there are horizontal asymptotes at $\pi/2$ and $-\pi/2$

How are the inverse trig functions used?

- The functions **arcsin**, **arccos** and **arctan** are used to evaluate trigonometric equations such as $\sin x = 0.5$
 - If $\sin x = 0.5$ then $\arcsin 0.5 = x$ for values of x between $-\pi/2 \le x \le \pi/2$
 - You can then use symmetries of the trig function to find solutions over other intervals
- The inverse trig functions are also used to help evaluate algebraic expressions
 - From $\sin(\arcsin x) = x$ we can also say that $\sin^n(\arcsin x) = x^n$ for $-1 \le x \le 1$
 - If using an inverse trig function to evaluate an algebraic expression then remember to consider the domain and range of the function
 - $\arcsin(\sin x) = x$ only for $-\pi/2 \le x \le \pi/2$
 - $arccos(cos x) = x only for 0 \le x \le \pi$
 - $\arctan(\tan x) = x$ only for $-\pi/2 < x < \pi/2$
 - The symmetries of the trig functions can be used when values lie outside of the domain or range
 - Using $\sin(x) = \sin(\pi x)$ you get $\arcsin(\sin(2\pi/3)) = \arcsin(\sin(\pi/3)) = \pi/3$

Examiner Tip

Make sure you know the shapes of the graphs for sin, cos and tan so that you can easily reflect them in the line y = x and hence sketch the graphs of arcsin, arccos and arctan

Head to www.savemyexams.com for more awesome resources

Worked example

Given that X satisfies the equation $\arccos X = k$ where $\frac{\pi}{2} < k < \pi$, state the range of possible values of X.

If
$$\arccos x = k$$
, then $x = \cos k (\cos(\arccos x) = x)$
 $y = \cos k$

For $\frac{\pi}{2} < k < \pi$, $-1 < \cos k < 0$

